Beetles
The diversity of beetles is very wide-ranging. They are found in almost all types of habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. The beetle’s exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armored defenses of the beetle while maintaining flexibility. The general anatomy of a beetle is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order.
Like all insects, beetles’ bodies are divided into three sections: the head, the thorax, and the abdomen. Beetles are endopterygotes, which means that they undergo complete metamorphosis, a biological process by which an animal physically develops after birth or hatching, undergoing a series of conspicuous and relatively abrupt change in the its body structure. Coleopteran species have an extremely intricate behavior when mating, using such methods as pheromones for communication to locate potential mates. Males may fight for females using very elongated mandibles, causing a strong divergence between males and females in sexual dimorphism.
Beetles are one of the largest orders of insects, with 350,000–400,000 species in four suborders (Adephaga, Archostemata, Myxophaga, and Polyphaga), making up about 40% of all insect species described. Even though classification at the family level is a bit unstable, there are about 500 recognized families and subfamilies. One of the first proposed estimates of the total number of beetle species on the planet, based on field data rather than on catalog numbers. The technique used for his original estimate, possibly as many as 12,000,000 species, was criticized, and was later revised, with estimates of 850,000–4,000,000 species proposed. Some 70–95% of all beetle species, depending on the estimate, remain undescribed. The beetle fauna is not equally well known in all parts of the world. For example, the known beetle diversity of Australia is estimated at 23,000 species in 3265 genera and 121 families. This is slightly lower than reported for North America, a land mass of similar size with 25,160 species in 3526 genera and 129 families. While other predictions show there could be as many as 28,000 species in North America, including those currently undescribed, a realistic estimate of the little-studied Australian beetle fauna’s true diversity could vary from 80,000 to 100,000. Beetles may display extremely intricate behavior when mating.
Pheromone communication is likely to be important in the location of a mate. Different species use different chemicals for their pheromones. Some scarab beetles (for example,, Rutelinae) utilize pheromones derived from fatty acid synthesis, while other scarab beetles use amino acids and terpenoid compounds (for example,, Melolonthinae). Another way species of Coleoptera find mates is the use of biosynthesized light, or bioluminescence. This special form of a mating call is confined to fireflies (Lampyridae) by the use of abdominal light producing organs. The males and females engage in complex dialogue before mating, identifying different species by differences in duration, flight patterns, composition, and intensity.
A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (for example, flour beetle), laid in clumps on leaves (for example, Colorado potato beetle), or individually attached (for example, mungbean beetle and other seed borers) or buried in the medium (for example, carrot weevil). Parental care varies between species, ranging from the simple laying of eggs under a leaf to certain scarab beetles, which construct underground structures complete with a supply of dung to house and feed their young.
Other beetles are leaf rollers, biting sections of leaves to cause them to curl inwards, then laying their eggs, thus protected, inside. Besides being abundant and varied, beetles are able to exploit the wide diversity of food sources available in their many habitats. Some are omnivores, eating both plants and animals. Other beetles are highly specialized in their diet. Many species of leaf beetles, longhorn beetles, and weevils are very host-specific, feeding on only a single species of plant. Ground beetles and rove beetles (family Staphylinidae), among others, are primarily carnivorous and will catch and consume many other arthropods and small prey, such as earthworms and snails. While most predatory beetles are generalists, a few species have more specific prey requirements or preferences.
Decaying organic matter is a primary diet for many species. This can range from dung, which is consumed by coprophagous species (such as certain scarab beetles of the family Scarabaeidae), to dead animals, which are eaten by necrophagous species (such as the carrion beetles of the family Silphidae). Some of the beetles found within dung and carrion are in fact predatory. These include the clown beetles, preying on the larvae of coprophagous and necrophagous insects. About 3⁄4 of beetle species are phytophagous in both the larval and adult stages, living in or on plants, wood, fungi, and a variety of stored products, including cereals, tobacco, and dried fruits. Because many of these plants are important for agriculture, forestry, and the household, the beetle can be considered a pest. Some of these species cause significant damage, such as the Boll weevil, which feeds on cotton buds and flowers. The Boll Weevil crossed the Rio Grande near Brownsville, Texas to enter the United States from Mexico around 1892[53] and had reached southeastern Alabama by 1915.
By the mid 1920s it had entered all cotton growing regions in the U.S., traveling 40 to 160 miles (60–260 km) per year. It remains the most destructive cotton pest in North America. Mississippi State University has estimated that since the boll weevil entered the United States it has cost U.S. cotton producers about $13 billion, and in recent times about $300 million per year. Many other species also have done extensive damage to plant populations, such as the bark beetle and elm Leaf beetle. The bark beetle and elm leaf beetle, among other species, have been known to nest in elm trees. Bark beetles in particular carry Dutch elm disease as they move from infected breeding sites to feed on healthy elm trees. The spread of Dutch elm disease by the beetle has led to the devastation of elm trees in many parts of the Northern Hemisphere, notably in Europe and North America.